Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Proc Natl Acad Sci U S A ; 120(23): e2303509120, 2023 06 06.
Article in English | MEDLINE | ID: covidwho-20243539

ABSTRACT

Vectored immunoprophylaxis was first developed as a means of establishing engineered immunity to HIV using an adenoassociated viral vector expressing a broadly neutralizing antibody. We applied this concept to establish long-term prophylaxis against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a mouse model using adenoassociated virus and lentiviral vectors expressing a high-affinity angiotensin-converting enzyme 2 (ACE2) decoy. Administration of decoy-expressing (adenoassociated virus) AAV2.retro and AAV6.2 vectors by intranasal instillation or intramuscular injection protected mice against high-titered SARS-CoV-2 infection. AAV and lentiviral vectored immunoprophylaxis was durable and was active against SARS-CoV-2 Omicron subvariants. The AAV vectors were also effective therapeutically when administered postinfection. Vectored immunoprophylaxis could be of value for immunocompromised individuals for whom vaccination is not practical and as a means to rapidly establish protection from infection. Unlike monoclonal antibody therapy, the approach is expected to remain active despite continued evolution viral variants.


Subject(s)
COVID-19 , Animals , Mice , COVID-19/prevention & control , SARS-CoV-2/genetics , Immunization , Immunotherapy , Vaccination , Dependovirus/genetics , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use
2.
JCI Insight ; 8(7)2023 04 10.
Article in English | MEDLINE | ID: covidwho-2304483

ABSTRACT

Currently authorized COVID-19 vaccines induce humoral and cellular responses to epitopes in the SARS-CoV-2 spike protein, though the relative roles of antibodies and T cells in protection are not well understood. To understand the role of vaccine-elicited T cell responses in protection, we established a T cell-only vaccine using a DC-targeted lentiviral vector expressing single CD8+ T cell epitopes of the viral nucleocapsid, spike, and ORF1. Immunization of angiotensin-converting enzyme 2-transgenic mice with ex vivo lentiviral vector-transduced DCs or by direct injection of the vector induced the proliferation of functional antigen-specific CD8+ T cells, resulting in a 3-log decrease in virus load upon live virus challenge that was effective against the ancestral virus and Omicron variants. The Pfizer/BNT162b2 vaccine was also protective in mice, but the antibodies elicited did not cross-react on the Omicron variants, suggesting that the protection was mediated by T cells. The studies suggest that the T cell response plays an important role in vaccine protection. The findings suggest that the incorporation of additional T cell epitopes into current vaccines would increase their effectiveness and broaden protection.


Subject(s)
COVID-19 , Vaccines , Animals , Humans , Mice , COVID-19/prevention & control , COVID-19 Vaccines , Epitopes, T-Lymphocyte , BNT162 Vaccine , SARS-CoV-2 , Antibodies , Mice, Transgenic , Models, Animal
3.
iScience ; 26(2): 106092, 2023 Feb 17.
Article in English | MEDLINE | ID: covidwho-2245590

ABSTRACT

The emergence of SARS-CoV-2 variants with highly mutated spike proteins has presented an obstacle to the use of monoclonal antibodies for the prevention and treatment of SARS-CoV-2 infection. We show that a high-affinity receptor decoy protein in which a modified ACE2 ectodomain is fused to a single domain of an immunoglobulin heavy chain Fc region dramatically suppressed virus loads in mice upon challenge with a high dose of parental SARS-CoV-2 or Omicron variants. The decoy also potently suppressed virus replication when administered shortly post-infection. The decoy approach offers protection against the current viral variants and, potentially, against SARS-CoV-2 variants that may emerge with the continued evolution of the spike protein or novel viruses that use ACE2 for virus entry.

4.
iScience ; 26(2): 106075, 2023 Feb 17.
Article in English | MEDLINE | ID: covidwho-2240400

ABSTRACT

The emergence of recombinant viruses is a threat to public health, as recombination may integrate variant-specific features that together result in escape from treatment or immunity. The selective advantages of recombinant SARS-CoV-2 isolates over their parental lineages remain unknown. We identified a Delta-Omicron (AY.45-BA.1) recombinant in an immunosuppressed transplant recipient treated with monoclonal antibody Sotrovimab. The single recombination breakpoint is located in the spike N-terminal domain adjacent to the Sotrovimab binding site. While Delta and BA.1 are sensitive to Sotrovimab neutralization, the Delta-Omicron recombinant is highly resistant. To our knowledge, this is the first described instance of recombination between circulating SARS-CoV-2 variants as a functional mechanism of resistance to treatment and immune escape.

5.
Sci Adv ; 8(49): eabo3977, 2022 12 09.
Article in English | MEDLINE | ID: covidwho-2161780

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a global health crisis after its emergence in 2019. Replication of the virus is initiated by binding of the viral spike (S) protein to human angiotensin-converting enzyme 2 (ACE2) on the target cell surface. Mutations acquired by SARS-CoV-2 S variants likely influence virus-target cell interaction. Here, using single-virus tracking to capture these initial steps, we observe how viruses carrying variant S interact with target cells. Specificity for ACE2 occurs for viruses with the reference sequence or D614G mutation. Analysis of the Alpha, Beta, and Delta SARS-CoV-2 variant S proteins revealed a progressive altered cell interaction with a reduced dependence on ACE2. Notably, the Delta variant S affinity was independent of ACE2. These enhanced interactions may account for the increased transmissibility of variants. Knowledge of how mutations influence cell interaction is essential for vaccine development against emerging variants of SARS-CoV-2.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Mutation
6.
Biochem Eng J ; 187: 108596, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1996033

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic since December 2019, and with it, a push for innovations in rapid testing and neutralizing antibody treatments in an effort to solve the spread and fatality of the disease. One such solution to both of these prevailing issues is targeting the interaction of SARS-CoV-2 spike receptor binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2) receptor protein. Structural studies have shown that the N-terminal alpha-helix comprised of the first 23 residues of ACE2 plays an important role in this interaction. Where it is typical to design a binding domain to fit a target, we have engineered a protein that relies on multivalency rather than the sensitivity of a monomeric ligand to provide avidity to its target by fusing the N-terminal helix of ACE2 to the coiled-coil domain of the cartilage oligomeric matrix protein. The resulting ACE-MAP is able to bind to the SARS-CoV-2 RBD with improved binding affinity, is expressible in E. coli, and is thermally stable and relatively small (62 kDa). These properties suggest ACE-MAP and the MAP scaffold to be a promising route towards developing future diagnostics and therapeutics to SARS-CoV-2.

7.
Viruses ; 14(6)2022 06 18.
Article in English | MEDLINE | ID: covidwho-1964109

ABSTRACT

The recent emergence of the Omicron BA.1 and BA.2 variants with heavily mutated spike proteins has posed a challenge to the effectiveness of current vaccines and to monoclonal antibody therapy for severe COVID-19. After two immunizations of individuals with no history of previous SARS-CoV-2 infection with BNT162b2 vaccine, neutralizing titer against BA.1 and BA.2 were 20-fold decreased compared to titers against the parental D614G virus. A third immunization boosted overall neutralizing titers by about 5-fold but titers against BA.1 and BA.2 remained about 10-fold below that of D614G. Both Omicron variants were highly resistant to several of the emergency use authorized therapeutic monoclonal antibodies. The variants were highly resistant to Regeneron REGN10933 and REGN10987 and Lilly LY-CoV555 and LY-CoV016 while Vir-7831 and the mixture of AstraZeneca monoclonal antibodies AZD8895 and AZD1061 were significantly decreased in neutralizing titer. Strikingly, a single monoclonal antibody LY-CoV1404 potently neutralized both Omicron variants.


Subject(s)
COVID-19 , Vaccines , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
8.
Viruses ; 14(6):1334, 2022.
Article in English | MDPI | ID: covidwho-1894337

ABSTRACT

The recent emergence of the Omicron BA.1 and BA.2 variants with heavily mutated spike proteins has posed a challenge to the effectiveness of current vaccines and to monoclonal antibody therapy for severe COVID-19. After two immunizations of individuals with no history of previous SARS-CoV-2 infection with BNT162b2 vaccine, neutralizing titer against BA.1 and BA.2 were 20-fold decreased compared to titers against the parental D614G virus. A third immunization boosted overall neutralizing titers by about 5-fold but titers against BA.1 and BA.2 remained about 10-fold below that of D614G. Both Omicron variants were highly resistant to several of the emergency use authorized therapeutic monoclonal antibodies. The variants were highly resistant to Regeneron REGN10933 and REGN10987 and Lilly LY-CoV555 and LY-CoV016 while Vir-7831 and the mixture of AstraZeneca monoclonal antibodies AZD8895 and AZD1061 were significantly decreased in neutralizing titer. Strikingly, a single monoclonal antibody LY-CoV1404 potently neutralized both Omicron variants.

9.
iScience ; 25(5): 104223, 2022 May 20.
Article in English | MEDLINE | ID: covidwho-1783436

ABSTRACT

The effect of SARS-CoV-2 infection on placental function is not well understood. Analysis of placentas from women who tested positive at delivery showed SARS-CoV-2 genomic and subgenomic RNA in 22 out of 52 placentas. Placentas from two mothers with symptomatic COVID-19 whose pregnancies resulted in adverse outcomes for the fetuses contained high levels of viral Alpha variant RNA. The RNA was localized to the trophoblasts that cover the fetal chorionic villi in direct contact with maternal blood. The intervillous spaces and villi were infiltrated with maternal macrophages and T cells. Transcriptome analysis showed an increased expression of chemokines and pathways associated with viral infection and inflammation. Infection of placental cultures with live SARS-CoV-2 and spike protein-pseudotyped lentivirus showed infection of syncytiotrophoblast and, in rare cases, endothelial cells mediated by ACE2 and Neuropilin-1. Viruses with Alpha, Beta, and Delta variant spikes infected the placental cultures at significantly greater levels.

10.
EBioMedicine ; 78: 103944, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1778091

ABSTRACT

BACKGROUND: SARS-CoV-2 vaccines currently authorized for emergency use have been highly successful in preventing infection and lessening disease severity. The vaccines maintain effectiveness against earlier SARS-CoV-2 Variants of Concern but the heavily mutated, highly transmissible Omicron variant presents an obstacle both to vaccine protection and monoclonal antibody therapies. METHODS: Pseudotyped lentiviruses were incubated with serum from vaccinated and boosted donors or therapeutic monoclonal antibody and then applied to target cells. After 2 days, luciferase activity was measured in a microplate luminometer. Resistance mutations of the Omicron spike were identified using point-mutated spike protein pseudotypes and mapped onto the three-dimensional spike protein structure. FINDINGS: Virus with the Omicron spike protein was 26-fold resistant to neutralization by recovered donor sera and 26-34-fold resistance to Pfizer BNT162b2 and Moderna vaccine-elicited antibodies following two immunizations. A booster immunization increased neutralizing titres against Omicron. Neutralizing titres against Omicron were increased in the sera with a history of prior SARS-CoV-2 infection. Analysis of the therapeutic monoclonal antibodies showed that the Regeneron and Eli Lilly monoclonal antibodies were ineffective against the Omicron pseudotype while Sotrovimab and Evusheld were partially effective. INTERPRETATION: The results highlight the benefit of a booster immunization to protect against the Omicron variant and demonstrate the challenge to monoclonal antibody therapy. The decrease in neutralizing titres against Omicron suggest that much of the vaccine efficacy may rely on T cells. FUNDING: The work was funded by grants from the NIH to N.R.L. (DA046100, AI122390 and AI120898) and 55 to M.J.M. (UM1AI148574).


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Spike Glycoprotein, Coronavirus/genetics , Vaccination
11.
PLoS Biol ; 20(3): e3001592, 2022 03.
Article in English | MEDLINE | ID: covidwho-1770633

ABSTRACT

Gastrointestinal effects associated with Coronavirus Disease 2019 (COVID-19) are highly variable for reasons that are not understood. In this study, we used intestinal organoid-derived cultures differentiated from primary human specimens as a model to examine interindividual variability. Infection of intestinal organoids derived from different donors with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) resulted in orders of magnitude differences in virus replication in small intestinal and colonic organoid-derived monolayers. Susceptibility to infection correlated with angiotensin I converting enzyme 2 (ACE2) expression level and was independent of donor demographic or clinical features. ACE2 transcript levels in cell culture matched the amount of ACE2 in primary tissue, indicating that this feature of the intestinal epithelium is retained in the organoids. Longitudinal transcriptomics of organoid-derived monolayers identified a delayed yet robust interferon signature, the magnitude of which corresponded to the degree of SARS-CoV-2 infection. Interestingly, virus with the Omicron variant spike (S) protein infected the organoids with the highest infectivity, suggesting increased tropism of the virus for intestinal tissue. These results suggest that heterogeneity in SARS-CoV-2 replication in intestinal tissues results from differences in ACE2 levels, which may underlie variable patient outcomes.


Subject(s)
COVID-19 , Angiotensin-Converting Enzyme 2/genetics , Humans , Organoids , SARS-CoV-2
12.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1762664

ABSTRACT

The increasing prevalence of SARS-CoV-2 variants has raised concerns regarding possible decreases in vaccine effectiveness. Here, neutralizing antibody titers elicited by mRNA-based and adenoviral vector-based vaccines against variant pseudotyped viruses were measured. BNT162b2 and mRNA-1273-elicited antibodies showed modest neutralization resistance against Beta, Delta, Delta plus and Lambda variants whereas Ad26.COV2.S-elicited antibodies from a significant fraction of vaccinated individuals had less neutralizing titer (IC50 <50). The data underscore the importance of surveillance for breakthrough infections that result in severe COVID-19 and suggest a potential benefit by second immunization following Ad26.COV2.S to increase protection from current and future variants.

13.
Microbiol Spectr ; 10(1): e0169521, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1752774

ABSTRACT

Global control of COVID-19 will require the deployment of vaccines capable of inducing long-term protective immunity against SARS-CoV-2 variants. In this report, we describe an adjuvanted subunit candidate vaccine that affords elevated, sustained, and cross-variant SARS-CoV-2 neutralizing antibodies (NAbs) in multiple animal models. Alhydroxiquim-II is a Toll-Like Receptor (TLR) 7/8 small-molecule agonist chemisorbed on aluminum hydroxide (Alhydrogel). Vaccination with Alhydroxiquim-II combined with a stabilized, trimeric form of the SARS-CoV-2 spike protein (termed CoVac-II) resulted in high-titer NAbs in mice, with no decay in responses over an 8-month period. NAbs from sera of CoVac-II-immunized mice, horses and rabbits were broadly neutralizing against SARS-CoV-2 variants. Boosting long-term CoVac-II-immunized mice with adjuvanted spike protein from the Beta variant markedly increased levels of NAb titers against multiple SARS-CoV-2 variants; notably, high titers against the Delta variant were observed. These data strongly support the clinical assessment of Alhydroxiquim-II-adjuvanted spike proteins to protect against SARS-CoV-2 variants of concern. IMPORTANCE There is an urgent need for next-generation COVID-19 vaccines that are safe, demonstrate high protective efficacy against SARS-CoV-2 variants and can be manufactured at scale. We describe a vaccine candidate (CoVac-II) that is based on stabilized, trimeric spike antigen produced in an optimized, scalable and chemically defined production process. CoVac-II demonstrates strong and persistent immunity after vaccination of mice, and is highly immunogenic in multiple animal models, including rabbits and horses. We further show that prior immunity can be boosted using a recombinant spike antigen from the Beta variant; importantly, plasma from boosted mice effectively neutralize multiple SARS-CoV-2 variants in vitro, including Delta. The strong humoral and Th1-biased immunogenicity of CoVac-II is driven by use of Alhydroxiquim-II (AHQ-II), the first adjuvant in an authorized vaccine that acts through the dual Toll-like receptor (TLR)7 and TLR8 pathways, as part of the Covaxin vaccine. Our data suggest AHQ-II/spike protein combinations could constitute safe, affordable, and mass-manufacturable COVID-19 vaccines for global distribution.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , CD4-Positive T-Lymphocytes/immunology , Horses , Mice , Rabbits , T-Lymphocytes/immunology
14.
Cell Rep ; 38(2): 110237, 2022 01 11.
Article in English | MEDLINE | ID: covidwho-1588138

ABSTRACT

Recently identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants Mu and C.1.2 have spike proteins with mutations that may confer resistance to natural and vaccine-elicited antibodies. Analysis of neutralizing antibody titers in the sera of vaccinated individuals without previous history of infection and from convalescent individuals show partial resistance of the viruses. In contrast, sera from individuals with a previous history of SARS-CoV-2 infection who were subsequently vaccinated neutralize variants with titers 4- to 11-fold higher, providing a rationale for vaccination of individuals with previous infection. The heavily mutated C.1.2 spike is the most antibody neutralization-resistant spike to date; however, the avidity of C.1.2 spike protein for angiotensin-converting enzyme 2 (ACE2) is low. This finding suggests that the virus evolved to escape the humoral response but has a decrease in fitness, suggesting that it may cause milder disease or be less transmissible. It may be difficult for the spike protein to evolve to escape neutralizing antibodies while maintaining high affinity for ACE2.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , A549 Cells , Cell Line , Cell Line, Tumor , HEK293 Cells , Humans , Neutralization Tests/methods , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods
15.
Cell Death Differ ; 29(2): 285-292, 2022 02.
Article in English | MEDLINE | ID: covidwho-1550276

ABSTRACT

The risk of zoonotic coronavirus spillover into the human population, as highlighted by the SARS-CoV-2 pandemic, demands the development of pan-coronavirus antivirals. The efficacy of existing antiviral ribonucleoside/ribonucleotide analogs, such as remdesivir, is decreased by the viral proofreading exonuclease NSP14-NSP10 complex. Here, using a novel assay and in silico modeling and screening, we identified NSP14-NSP10 inhibitors that increase remdesivir's potency. A model compound, sofalcone, both inhibits the exonuclease activity of SARS-CoV-2, SARS-CoV, and MERS-CoV in vitro, and synergistically enhances the antiviral effect of remdesivir, suppressing the replication of SARS-CoV-2 and the related human coronavirus OC43. The validation of top hits from our primary screenings using cellular systems provides proof-of-concept for the NSP14 complex as a therapeutic target.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Exoribonucleases/metabolism , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism , A549 Cells , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Antiviral Agents/pharmacology , Humans , SARS-CoV-2/enzymology , Virus Replication/drug effects
16.
iScience ; 24(11): 103341, 2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1474648

ABSTRACT

Highly transmissible SARS-CoV-2 variants identified in India and designated B.1.617, Kappa (B.1.617.1), Delta (B.1.617.2), B.1.618, and B.1.36.29 contain spike mutations L452R, T478K, E484K, E484Q, and N440K located within the spike receptor-binding domain and thus could contribute to increased transmissibility and potentially allow re-infection or cause resistance to vaccine-elicited antibody. To address these issues, we used lentiviruses pseudotyped by variant spikes to measure their neutralization by convalescent sera, vaccine-elicited and Regeneron therapeutic antibodies, and ACE2 affinity. Convalescent sera and vaccine-elicited antibodies neutralized viruses with Delta spike with 2- to 5-fold decrease in titer in different donors. Regeneron antibody cocktail neutralized virus with the Delta spike with a 2.6-fold decrease in titer. Neutralization resistance to serum antibodies and monoclonal antibodies was mediated by L452R mutation. These relatively modest decreases in antibody neutralization titer for viruses with variant spike proteins suggest that current vaccines will remain protective against the family of Delta variants.

17.
mBio ; 12(4): e0138621, 2021 08 31.
Article in English | MEDLINE | ID: covidwho-1327615

ABSTRACT

DNA sequence analysis recently identified the novel SARS-CoV-2 variant B.1.526 that is spreading at an alarming rate in the New York City area. Two versions of the variant were identified, both with the prevalent D614G mutation in the spike protein, together with four novel point mutations and with an E484K or S477N mutation in the receptor-binding domain, raising concerns of possible resistance to vaccine-elicited and therapeutic antibodies. We report that convalescent-phase sera and vaccine-elicited antibodies retain full neutralizing titer against the S477N B.1.526 variant and neutralize the E484K version with a modest 3.5-fold decrease in titer compared to D614G. The E484K version was neutralized with a 12-fold decrease in titer by the REGN10933 monoclonal antibody, but the combination cocktail with REGN10987 was fully active. The findings suggest that current vaccines and Regeneron therapeutic monoclonal antibodies will remain protective against the B.1.526 variants. The findings further support the value of widespread vaccination. IMPORTANCE A novel SARS-CoV-2 variant termed B.1.526 was recently identified in New York City and has been found to be spreading at an alarming rate. The variant has mutations in its spike protein that might allow it to escape neutralization by vaccine-elicited antibodies and might cause monoclonal antibody therapy for COVID-19 to be less successful. We report here that these fears are not substantiated; convalescent-phase sera and vaccine-elicited antibodies neutralized the B.1.526 variant. One of the Regeneron therapeutic monoclonal antibodies was less effective against the B.1.526 (E484K) variant but the two-antibody combination cocktail was fully active. The findings should assuage concerns that current vaccines will be ineffective against the B.1.526 (E484K) variant and suggest the importance of continued widespread vaccination.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Cell Line , HEK293 Cells , Humans , New York City , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccination
18.
mBio ; 12(3): e0069621, 2021 06 29.
Article in English | MEDLINE | ID: covidwho-1249476

ABSTRACT

The increasing prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with spike protein mutations raises concerns that antibodies elicited by natural infection or vaccination and therapeutic monoclonal antibodies will become less effective. We show that convalescent-phase sera neutralize pseudotyped viruses with the B.1.1.7, B.1.351, B.1.1.248, COH.20G/677H, 20A.EU2, and mink cluster 5 spike proteins with only a minor loss in titer. Similarly, antibodies elicited by Pfizer BNT162b2 vaccination neutralized B.1.351 and B.1.1.248 with only a 3-fold decrease in titer, an effect attributable to E484K. Analysis of the Regeneron monoclonal antibodies REGN10933 and REGN10987 showed that REGN10933 has lost neutralizing activity against the B.1.351 and B.1.1.248 pseudotyped viruses, and the cocktail is 9- to 15-fold decreased in titer. These findings suggest that antibodies elicited by natural infection and by the Pfizer vaccine will maintain protection against the B.1.1.7, B.1.351, and B.1.1.248 variants but that monoclonal antibody therapy may be less effective for patients infected with B.1.351 or B.1.1.248 SARS-CoV-2. IMPORTANCE The rapid evolution of SARS-CoV-2 variants has raised concerns with regard to their potential to escape from vaccine-elicited antibodies and anti-spike protein monoclonal antibodies. We report here on an analysis of sera from recovered patients and vaccinated individuals and on neutralization by Regeneron therapeutic monoclonal antibodies. Overall, the variants were neutralized nearly as well as the wild-type pseudotyped virus. The B.1.351 variant was somewhat resistant to vaccine-elicited antibodies but was still readily neutralized. One of the two Regeneron therapeutic monoclonal antibodies seems to have lost most of its activity against the B.1.351 variant, raising concerns that the combination therapy might be less effective for some patients. The findings should alleviate concerns that vaccines will become ineffective but suggest the importance of continued surveillance for potential new variants.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , BNT162 Vaccine , COVID-19/therapy , Cell Line , HEK293 Cells , Humans , Immunization, Passive , Spike Glycoprotein, Coronavirus/immunology , Vaccination , COVID-19 Serotherapy
19.
Cell ; 184(12): 3205-3221.e24, 2021 06 10.
Article in English | MEDLINE | ID: covidwho-1201121

ABSTRACT

Monoclonal antibodies (mAbs) are a focus in vaccine and therapeutic design to counteract severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants. Here, we combined B cell sorting with single-cell VDJ and RNA sequencing (RNA-seq) and mAb structures to characterize B cell responses against SARS-CoV-2. We show that the SARS-CoV-2-specific B cell repertoire consists of transcriptionally distinct B cell populations with cells producing potently neutralizing antibodies (nAbs) localized in two clusters that resemble memory and activated B cells. Cryo-electron microscopy structures of selected nAbs from these two clusters complexed with SARS-CoV-2 spike trimers show recognition of various receptor-binding domain (RBD) epitopes. One of these mAbs, BG10-19, locks the spike trimer in a closed conformation to potently neutralize SARS-CoV-2, the recently arising mutants B.1.1.7 and B.1.351, and SARS-CoV and cross-reacts with heterologous RBDs. Together, our results characterize transcriptional differences among SARS-CoV-2-specific B cells and uncover cross-neutralizing Ab targets that will inform immunogen and therapeutic design against coronaviruses.


Subject(s)
Antibodies, Neutralizing/immunology , B-Lymphocytes/metabolism , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/chemistry , Antibodies, Viral/blood , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antigen-Antibody Complex/chemistry , Antigen-Antibody Complex/metabolism , Antigen-Antibody Reactions , B-Lymphocytes/cytology , B-Lymphocytes/virology , COVID-19/pathology , COVID-19/virology , Cryoelectron Microscopy , Crystallography, X-Ray , Gene Expression Profiling , Humans , Immunoglobulin A/immunology , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/genetics , Protein Domains/immunology , Protein Multimerization , Protein Structure, Quaternary , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Sequence Analysis, RNA , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
20.
Sci Rep ; 11(1): 5538, 2021 03 10.
Article in English | MEDLINE | ID: covidwho-1125909

ABSTRACT

Understanding antibody responses to SARS-CoV-2 is indispensable for the development of containment measures to overcome the current COVID-19 pandemic. Recent studies showed that serum from convalescent patients can display variable neutralization capacities. Still, it remains unclear whether there are specific signatures that can be used to predict neutralization. Here, we performed a detailed analysis of sera from a cohort of 101 recovered healthcare workers and we addressed their SARS-CoV-2 antibody response by ELISA against SARS-CoV-2 Spike receptor binding domain and nucleoprotein. Both ELISA methods detected sustained levels of serum IgG against both antigens. Yet, the majority of individuals from our cohort generated antibodies with low neutralization capacity and only 6% showed high neutralizing titers against both authentic SARS-CoV-2 virus and the Spike pseudotyped virus. Interestingly, higher neutralizing sera correlate with detection of -IgG, IgM and IgA antibodies against both antigens, while individuals with positive IgG alone showed poor neutralization response. These results suggest that having a broader repertoire of antibodies may contribute to more potent SARS-CoV-2 neutralization. Altogether, our work provides a cross sectional snapshot of the SARS-CoV-2 neutralizing antibody response in recovered healthcare workers and provides preliminary evidence that possessing multiple antibody isotypes can play an important role in predicting SARS-CoV-2 neutralization.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Viral/immunology , COVID-19/therapy , Cohort Studies , Cross-Sectional Studies , Enzyme-Linked Immunosorbent Assay/methods , Epitopes/immunology , Female , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Male , Neutralization Tests/methods , Pandemics , SARS-CoV-2/pathogenicity , Serum/immunology , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL